En 2018 las publicaciones diarias buscando gerentes con conocimientos de Python crecieron un 80%. El aprendizaje de Python constituye un paso inicial para introducirse en la Ciencia de datos.

Duración: 6 semanas

El curso se extiende por seis semanas. En las primeras cuatro semanas se presenta todo el contenido. Las últimas dos semanas se emplean en repaso, puesta al día y desarrollo del Proyecto Personal, optativo. El Proyecto Personal brinda la oportunidad de desarrollar un tema de interés particular para el participante.

Destinatarios: La naturaleza multipropósito de Python, unido a la facilidad de aprendizaje, lo hacen atractivo tanto para jóvenes estudiantes como para profesionales formados. Este es un curso de introducción a Python que le llevará hasta un nivel intermedio de manejo del lenguaje. Quienes tengan nociones de Python, o provengan de otros lenguajes, también encontrarán material útil.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

Requerimientos de computación:

Los programas que se emplean son poco exigentes en espacio físico en el disco duro y de uso de la memoria RAM. Una PC con procesador Intel i5, o de rango equivalente, es suficiente para trabajar sin dificultad.Se emplea software de acceso libre y gratuito.

Descripción general del curso:    

Python es un lenguaje de programación de alto nivel y multipropósito que opera mediante la interpretación de scripts y favorece una organización modular del código. Aclaremos esta definición. Alto nivel significa que tiene una sintaxis más cercana a la experiencia en lenguaje del usuario, en otras palabras, es más fácil de entender. El término interpretación se refiere a que el código, o script, es leido, interpretado y ejecutado línea por línea, sin pasar por una etapa de compilación, como es el caso de lenguajes como FORTRAN. Organización modular indica que un script puede dividirse en módulos independientes entre sí de tal manera que un determinado módulo puede ser reutilizado en otros scripts. Adicionalmente, Python es un lenguaje de acceso libre y gratuito.

Python es un lenguaje de programación estructurada y también un lenguaje de programación orientada a objetos. Este curso se enfoca en la programación estructurada.

¿En qué se usa Python?

  • Minería de datos
  • Aprendizaje automatizado
  • Inteligencia artificial
  • Desarrollo web
  • Creación de juegos
  • Creación de aplicaciones de escritorio

ChatGPT:
Se incorpora ChatGPT para consultas generales y para ayuda con la codificación. La primera clase da ejemplos sobre el modo de uso y de posibles aplicaciones en el curso.

Duración: 6 semanas

Horas de curso: 96 horas

. ....

Destinatarios: Para quien desee aprender a programar en R, o simplemente utilizarlo en sus labores profesionales, este curso les dará el conocimiento necesario para hacerlo.

Modalidad: A distancia.

Requisitos: Se utiliza software de distribución libre y gratuita.

Este curso no requiere conocimientos previos de R. Se parte de cero y se construye conocimiento hasta un nivel intermedio avanzado. R no es un lenguaje difícil de aprender pero de todos modos requiere incorporar una cantidad importante de conceptos y de comandos propios de un lenguaje complejo.

Descripción general del curso:

R es el lenguaje ideal para trabajar en análisis y modelado estadístico. La compacidad de código y la versatilidad para procesar datos numéricos y categóricos son virtudes que lo colocan por sobre otros lenguajes en ese campo de aplicación. Por este motivo, aprender a programar en R es el primer paso hacia la Ciencia de Datos, un universo de aplicaciones en continua expansión. Para muchos empleos, programar en R agrega valor a sus antecedentes profesionales. R también opera en otros campos, como web scraping y análisis de datos espaciales, de lo cual se dan ejemplos hacia el final de este curso, pero en estos hay competencia.

Programación en R les enseñará a desarrollar sus propios scripts. Para ello se apoya en numerosos ejemplos, y especialmente en ejercicios de codificación que les invitan a ser protagonistas, ayudados por escuetas guías. De este modo, en seis semanas aprenderán programar en R.

Adicionalmente, un conjunto de scripts aplicados a problemas reales y detalladamente comentados, les guiará hacia un nivel intermedio alto de conocimiento de R, al tiempo que les impartirá las buenas prácticas de programación.

Un último módulo presenta una breve introducción a la aplicación de R en el manejo de datos espaciales, que podrá servir para encaminarles en ese tema.

Programa del curso

Primera Parte

Conceptos fundamentales

  • R y RStudio
    Descarga e instalación
    Operación
  • Paquetes
  • Estructuras y Tipos de datos
    Vector
    Matriz
    Array
    Lista
    Marco de datos
    Factor
    Coerción
    Función
    Inspección de las propiedades
  • Fundamentos de programación en R
    Scripts
    Iteración
    Condiciones
  • Gráficos avanzados
  • Operando con datos
    Ingresar/Exportar datos
    Manejo de fechas
    Manejo de tablas
    Valores faltantes
    Valores extremos
    Minería de datos

Segunda Parte

Aplicaciones

  • Fundamentos de las técnicas aplicadas
    Algebra vectorial y matricial
    Programación lineal
    Series temporales
    Correlación y regresión
    Clasificación, Matriz de distancia, Análisis de agrupamiento
    Componentes principales, Análisis factorial
  • Campos de aplicación
    Agricultura
    Ciencias de la Tierra y Ambientales
    Delito
    Demografía
    Finanzas
    Ingeniería
    Medicina
    Aprendizaje automatizado
  • Nociones de análisis espacial

 

Dinámica de la cursada:

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.

Docentes a cargo: Augusto y Gustavo González Bonorino

Duración: 6 semanas

Carga horaria estimada: 60 horas

A distancia, dictado en la plataforma virtual del Centro REDES.

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.

..... Más Información y Aranceles

Descripción general del curso

ChatGPT es sin duda el producto de IA más conocido. La mayoría de ustedes lo han probado y han ya apreciado la habilidad de ChatGPT para dar atinadas respuestas a las más variadas consultas. Y quizás también hayan ya descubierto algunas de sus debilidades. Si le consultan sobre eventos recientes o sobre información privada, como los apuntes de este curso, ChatGPT no podrá dar respuestas adecuadas. La razón de ello es sencilla: en ambos casos la información no estaba disponible al momento del entrenamiento, ya sea por confidencialidad, ya sea porque el evento tuvo lugar con posterioridad a la última actualización de ChatGPT. La generación de respuestas erróneas, o imprecisas, por parte de un modelo de lenguaje se conoce como alucinación.

El propósito de este curso es mostrarles cómo construir un chatbot, es decir, un programa capaz de simular una conversación con el usuario, que responda a consultas referidas a datos que ustedes inyectan al modelo, datos que no fueron incluidos en el entrenamiento del modelo. Un chatbot es interactivo, establece una relación con el usuario. Las aplicaciones de este tipo de chatbot son múltiples. Puede distribuirse como manual de uso de un producto que su negocio vende, o como instructivo para un curso que ustedes dictan. Puede servir para rápidamente recuperar información sobre la Constitución de Argentina, o sobre la información contable de su empresa. También se emplean para gestionar la atención a clientes, respondiendo a consultas sobre su negocio o empresa, o sobre los requisitos para comprar un automóvil. Y así siguiendo ...

Nuestro chatbot empleará un modelo de lenguaje de gran escala (LLM) como motor del procesamiento de los datos. Durante el desarrollo de los LLM se descubrió que son capaces de aprender sobre datos nuevos. Dicha capacidad se implementa mediante un proceso denominado RAG (Retrieval Augmented Generation), libremente traducido como generación de respuestas por recuperación de texto aumentada. Gran parte del curso se dedica a explicar cómo se construye un sistema RAG y el resto a aplicarlo en la construcción de chatbots. Al concluir el curso habrán incorporado varios ejemplos de chatbots que podrá adaptar a requerimientos particulares.

 

Modalidad

El curso es fuertemente práctico. Videos complementados con scripts en cuadernos Jupyter, y ejercicios de codificación les guiarán hacia la construcción de un chatbot adaptado a sus requerimientos, en seis semanas.

Quienes deseen un certificado con calificación numérica deben presentar un Proyecto Personal al finalizar el curso.

Se ofrecen dos reuniones sincrónicas en horario a convenir, para brindar orientación y para aclarar dudas sobre el Proyecto Personal.

El acceso al material del curso permanece abierto por unos seis meses después del cierre.

 

Destinatarios:

Son potenciales interesados quienes puedan imaginar una aplicación para un chatbot conversacional que responda consultas que ChatGPT no puede responder.

  

Nivel y requisitos

El curso requiere un nivel de conocimiento básico de Python. Deben estar cómodos con funciones y lectura-escritura de datos.

  

Requerimientos de computación:

Los programas que se usan son de acceso libre y gratuito. Es poco exigente en espacio físico en el disco duro y de uso de la memoria RAM. Una PC con procesador Intel i3, o equivalente, es suficiente para trabajar sin dificultad.

   

Temario del curso

Propósito del curso
Organización del curso
Definición de chatbot
LangChain
Modelos de lenguaje y LangChain
Modelos LLM
Modelos chat
Mensajes como tuplas
Parámetros de control 
Comunicación con el modelo: el prompt
Tipos de prompt: cadenas y mensajes
Plantilla PromptTemplate
Modular el comportamiento del modelo
Variables múltiples
Guardar un prompt de PromptTemplate en el disco duro
Ejemplo de uso – resumen
Ejemplo de uso – traducción
Plantilla FewShotPromptTemplate
Aprendizaje en contexto (“in-context learning”)
Plantilla ChatPromptTemplate
Modular la actitud del asistente
Plantilla MessagePromptTemplate
Recuperar las variables dinámicas
Enriquecer el prompt
Revisión del uso de variables dinámicas
El sistema RAG (Retrieval Augmented Generation)
Organización de un sistema RAG
Carga de documentos (“Document loaders”)
Carga de archivos de texto
Carga de archivos CSV
Carga de documentos en PDF
Carga de documentos de MSWord
Descarga desde YouTube
Descarga de sitios web
Descarga del sitio arXiv
Carga desde un directorio
Partición de texto (“text splitting”)
Ventana de contexto
Partición de texto (“text splitting”)
Text splitters en LangChain
CharacterTextSplitter
RecursiveTextSplitter
Tokenización
La biblioteca tiktoken
Incrustación (“embedding”)
El espacio vectorial (“vector store”)
Vector store con ChromaDB
Vector store con FAISS
Guardar el espacio vectorial
Recuperación de datos y generación de la respuesta Retrieval
Recuperación con rutinas de un vector store
Similitud semántica (semantic similarity)
Ejemplo Similitud semántica con producto escalar
Ejemplo Similitud semántica con similarity_search
MMR (Maximum marginal relevance)
Recuperación con metadatos
Recuperación con rutinas de Retrieval
VectorStoreIndexCreator
Recuperación sin vector store
Output parsers
Parser CSV
Chain
LLMChain
SimpleSequentialChain
SequentialChain
RetrievalQA
LCEL