Duración: 6 semanas

Horas de curso: 96 horas

. ....

Destinatarios: Para quien desee aprender a programar en R, o simplemente utilizarlo en sus labores profesionales, este curso les dará el conocimiento necesario para hacerlo.

Modalidad: A distancia.

Requisitos: Se utiliza software de distribución libre y gratuita.

Este curso no requiere conocimientos previos de R. Se parte de cero y se construye conocimiento hasta un nivel intermedio avanzado. R no es un lenguaje difícil de aprender pero de todos modos requiere incorporar una cantidad importante de conceptos y de comandos propios de un lenguaje complejo.

Descripción general del curso:

R es el lenguaje ideal para trabajar en análisis y modelado estadístico. La compacidad de código y la versatilidad para procesar datos numéricos y categóricos son virtudes que lo colocan por sobre otros lenguajes en ese campo de aplicación. Por este motivo, aprender a programar en R es el primer paso hacia la Ciencia de Datos, un universo de aplicaciones en continua expansión. Para muchos empleos, programar en R agrega valor a sus antecedentes profesionales. R también opera en otros campos, como web scraping y análisis de datos espaciales, de lo cual se dan ejemplos hacia el final de este curso, pero en estos hay competencia.

Programación en R les enseñará a desarrollar sus propios scripts. Para ello se apoya en numerosos ejemplos, y especialmente en ejercicios de codificación que les invitan a ser protagonistas, ayudados por escuetas guías. De este modo, en seis semanas aprenderán programar en R.

Adicionalmente, un conjunto de scripts aplicados a problemas reales y detalladamente comentados, les guiará hacia un nivel intermedio alto de conocimiento de R, al tiempo que les impartirá las buenas prácticas de programación.

Un último módulo presenta una breve introducción a la aplicación de R en el manejo de datos espaciales, que podrá servir para encaminarles en ese tema.

Programa del curso

Primera Parte

Conceptos fundamentales

  • R y RStudio
    Descarga e instalación
    Operación
  • Paquetes
  • Estructuras y Tipos de datos
    Vector
    Matriz
    Array
    Lista
    Marco de datos
    Factor
    Coerción
    Función
    Inspección de las propiedades
  • Fundamentos de programación en R
    Scripts
    Iteración
    Condiciones
  • Gráficos avanzados
  • Operando con datos
    Ingresar/Exportar datos
    Manejo de fechas
    Manejo de tablas
    Valores faltantes
    Valores extremos
    Minería de datos

Segunda Parte

Aplicaciones

  • Fundamentos de las técnicas aplicadas
    Algebra vectorial y matricial
    Programación lineal
    Series temporales
    Correlación y regresión
    Clasificación, Matriz de distancia, Análisis de agrupamiento
    Componentes principales, Análisis factorial
  • Campos de aplicación
    Agricultura
    Ciencias de la Tierra y Ambientales
    Delito
    Demografía
    Finanzas
    Ingeniería
    Medicina
    Aprendizaje automatizado
  • Nociones de análisis espacial

 

Dinámica de la cursada:

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.


En 2018 las publicaciones diarias buscando gerentes con conocimientos de Python crecieron un 80%. El aprendizaje de Python constituye un paso inicial para introducirse en la Ciencia de datos.

Duración: 6 semanas

El curso se extiende por seis semanas. En las primeras cuatro semanas se presenta todo el contenido. Las últimas dos semanas se emplean en repaso, puesta al día y desarrollo del Proyecto Personal, optativo. El Proyecto Personal brinda la oportunidad de desarrollar un tema de interés particular para el participante.

Destinatarios: La naturaleza multipropósito de Python, unido a la facilidad de aprendizaje, lo hacen atractivo tanto para jóvenes estudiantes como para profesionales formados. Este es un curso de introducción a Python que le llevará hasta un nivel intermedio de manejo del lenguaje. Quienes tengan nociones de Python, o provengan de otros lenguajes, también encontrarán material útil.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

Requerimientos de computación:

Los programas que se emplean son poco exigentes en espacio físico en el disco duro y de uso de la memoria RAM. Una PC con procesador Intel i5, o de rango equivalente, es suficiente para trabajar sin dificultad.Se emplea software de acceso libre y gratuito.

Descripción general del curso:    

Python es un lenguaje de programación de alto nivel y multipropósito que opera mediante la interpretación de scripts y favorece una organización modular del código. Aclaremos esta definición. Alto nivel significa que tiene una sintaxis más cercana a la experiencia en lenguaje del usuario, en otras palabras, es más fácil de entender. El término interpretación se refiere a que el código, o script, es leido, interpretado y ejecutado línea por línea, sin pasar por una etapa de compilación, como es el caso de lenguajes como FORTRAN. Organización modular indica que un script puede dividirse en módulos independientes entre sí de tal manera que un determinado módulo puede ser reutilizado en otros scripts. Adicionalmente, Python es un lenguaje de acceso libre y gratuito.

Python es un lenguaje de programación estructurada y también un lenguaje de programación orientada a objetos. Este curso se enfoca en la programación estructurada.

¿En qué se usa Python?

  • Minería de datos
  • Aprendizaje automatizado
  • Inteligencia artificial
  • Desarrollo web
  • Creación de juegos
  • Creación de aplicaciones de escritorio

Duración: 6 semanas

Horas de curso: 96 horas

. ....

Destinatarios: Para quien desee aprender a programar en R, o simplemente utilizarlo en sus labores profesionales, este curso les dará el conocimiento necesario para hacerlo.

Modalidad: A distancia.

Requisitos: Se utiliza software de distribución libre y gratuita.

Este curso no requiere conocimientos previos de R. Se parte de cero y se construye conocimiento hasta un nivel intermedio avanzado. R no es un lenguaje difícil de aprender pero de todos modos requiere incorporar una cantidad importante de conceptos y de comandos propios de un lenguaje complejo.

Descripción general del curso:

R es el lenguaje ideal para trabajar en análisis y modelado estadístico. La compacidad de código y la versatilidad para procesar datos numéricos y categóricos son virtudes que lo colocan por sobre otros lenguajes en ese campo de aplicación. Por este motivo, aprender a programar en R es el primer paso hacia la Ciencia de Datos, un universo de aplicaciones en continua expansión. Para muchos empleos, programar en R agrega valor a sus antecedentes profesionales. R también opera en otros campos, como web scraping y análisis de datos espaciales, de lo cual se dan ejemplos hacia el final de este curso, pero en estos hay competencia.

Programación en R les enseñará a desarrollar sus propios scripts. Para ello se apoya en numerosos ejemplos, y especialmente en ejercicios de codificación que les invitan a ser protagonistas, ayudados por escuetas guías. De este modo, en seis semanas aprenderán programar en R.

Adicionalmente, un conjunto de scripts aplicados a problemas reales y detalladamente comentados, les guiará hacia un nivel intermedio alto de conocimiento de R, al tiempo que les impartirá las buenas prácticas de programación.

Un último módulo presenta una breve introducción a la aplicación de R en el manejo de datos espaciales, que podrá servir para encaminarles en ese tema.

Programa del curso

Primera Parte

Conceptos fundamentales

  • R y RStudio
    Descarga e instalación
    Operación
  • Paquetes
  • Estructuras y Tipos de datos
    Vector
    Matriz
    Array
    Lista
    Marco de datos
    Factor
    Coerción
    Función
    Inspección de las propiedades
  • Fundamentos de programación en R
    Scripts
    Iteración
    Condiciones
  • Gráficos avanzados
  • Operando con datos
    Ingresar/Exportar datos
    Manejo de fechas
    Manejo de tablas
    Valores faltantes
    Valores extremos
    Minería de datos

Segunda Parte

Aplicaciones

  • Fundamentos de las técnicas aplicadas
    Algebra vectorial y matricial
    Programación lineal
    Series temporales
    Correlación y regresión
    Clasificación, Matriz de distancia, Análisis de agrupamiento
    Componentes principales, Análisis factorial
  • Campos de aplicación
    Agricultura
    Ciencias de la Tierra y Ambientales
    Delito
    Demografía
    Finanzas
    Ingeniería
    Medicina
    Aprendizaje automatizado
  • Nociones de análisis espacial

 

Dinámica de la cursada:

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.

Docentes a cargo: Augusto y Gustavo González Bonorino

Duración: 6 semanas

Carga horaria estimada: 60 horas

Modalidad: A distancia, dictado en la plataforma virtual del Centro REDES.

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. Este formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material permanece en la plataforma y no existen restricciones de ingreso.

..... Más Información y Aranceles

Descripción general del curso:

El conocimiento se concreta en datos, y los datos tienen valor de mercado. Las redes sociales, las empresas de encuestas y de marketing, cualquier negocio grande o pequeño, trabaja con datos, y esos datos tienen valor. Se pueden comprar para mejorar una campaña publicitaria, y se pueden vender al mejor postor. Es decir, los datos se trafican. Sin embargo, los datos por sí solos no son tan valiosos como lo son si están eficientemente almacenados y organizados, de manera que se pueda acceder a ellos con facilidad y con seguridad. Este valor agregado se logra implementando bases de datos (BD), estructuras de almacenamiento eficientes, seguras, que pueden gestionarse computacionalmente. SQL es el lenguaje preferido para gestionar BD. Así, pues, es necesario saber programar en SQL para aprovechar la sostenida y creciente oferta laboral en este campo de las BD.

No obstante, no es suficiente saber SQL para lograr ese objetivo laboral. Tan importante como saber SQL es aprender de BD. Si uno aprende Python, o R, puede exitosamente escribir programas en esos lenguajes sin otro requerimiento. Pero por mucho que sepa de SQL, si lo aplica a una BD mal diseñada obtendrá resultados poco útiles. El aprendizaje de SQL debe necesariamente ir aparejado con aprender qué es una BD eficientemente diseñada, y cómo rediseñarla si fuere necesario. Encontrarán muchos cursos que enseñan SQL pero omiten hablar de BD. Estos cursos ofrecen la mitad de la solución. Convencidos de que esta es una omisión muy relevante, en hemos creado este curso con el doble propósito de enseñar SQL y el diseño de BD. En resumen, tienen dos cursos en uno.

El curso se divide en dos secciones mayores. La primera está dedicada casi exclusivamente al lenguaje SQL. Cómo recuperar la información que necesitamos de una tabla y cómo crear nuevas tablas de datos y poblarlas con información. En esta sección se trabaja con una única tabla. La segunda sección se dedica a bases de datos relacionales. Se enseña cómo diseñar una base de datos eficiente minimizando la redundancia y la dependencia funcional de información. Y también se introducen varios comandos no vistos previamente debido a que operan con más de una tabla.

Numerosos ejercicios distribuídos a lo largo del curso les servirán para fijar lo aprendido. Y al final, un proyecto guiado les permitirá poner en práctica todo lo aprendido. En este proyecto diseñarán una base de datos y aplicarán SQL para gestionarla mediante consultas.

Por conveniencia didáctica se emplea SQLite como sistema de gestión, pero la presentación facilita la migración a otros sistemas de gestión de BD.

Contenidos

Módulo 1 Presentación de SQL y SQLiteStudio

¿Qué es SQL?

Sistemas de gestión de bases de datos relacionales

Variantes de SQL

Operación interna de SQL

SQLite

SQLiteStudio

 

Módulo 2 Operar con SQL

Datos y tablas de datos

La sintaxis SQL

Nomenclatura

Cuestiones de estilo

Categorías de sentencias

Sentencias con SELECT

SELECT con expresiones

Cláusula LIMIT

Cláusula DISTINCT

Cláusula WHERE

Cláusula ORDER BY.

Funciones de agregación

La función COUNT()

Cláusula GROUP BY.

Cláusula HAVING

Funciones de cadenas

Inserción de comentarios

Ejercicios 1

 

Módulo 3 Crear una BD y poblarla con datos

Tipos de dato en SQLite

Operar en la interfaz de SQLiteStudio

Operar en el editor de SQLiteStudio

Restricciones (constraints)

Sentencias de manipulación de datos (DML)

Cláusula INSERT

Cláusula UPDATE

Cláusula DELETE

Cláusula ALTER TABLE

Cláusula DROP

Gestión de fechas y hora

Comandos transaccionales (TCL)

Ejercicios 2

 

Módulo 4 Diseño de bases de datos

Sistema de archivos o de ficheros

Tipos de bases de datos

BD relacionales

Diseño de una base de datos relacional

Entidades

Atributos

Relaciones o dependencias

Cardinalidad

Participación

Representación gráfica de relaciones entre entidades - Diagramas ER

Clave primaria (PRIMARY KEY)

Clave ajena (FOREIGN KEY)

De diagramas ER a esquemas relacionales

Normalización de una BD

Formas normales

 

Módulo 5 Operar con múltiples tablas

Operar con la BD chinook.db

Introducción a Lucid Chart

Crear el diagrama ER para chinook.db

Integridad referencial (referential integrity)

Consultar más de una tabla

El operador UNION

El operador INTERSECT

El operador EXCEPT

Cláusula JOIN

Cláusula INNER JOIN

Cláusula LEFT JOIN

Cláusula CROSS JOIN)

Self join

Subconsultas (subqueries)

Orden de ejecución de una consulta

 

Módulo 6 Tópicos avanzados

La sentencia PRAGMA

Cláusula VIEW

Cláusula WITH

Disparadores (TRIGGER)

La expresión CASE WHEN

Limitaciones de SQLite

Duración: 6 semanas

Horas de curso: 96 horas

. ....

Destinatarios: Para quien desee aprender a programar en R, o simplemente utilizarlo en sus labores profesionales, este curso les dará el conocimiento necesario para hacerlo.

Modalidad: A distancia.

Requisitos: Se utiliza software de distribución libre y gratuita.

Este curso no requiere conocimientos previos de R. Se parte de cero y se construye conocimiento hasta un nivel intermedio avanzado. R no es un lenguaje difícil de aprender pero de todos modos requiere incorporar una cantidad importante de conceptos y de comandos propios de un lenguaje complejo.

Descripción general del curso:

R es el lenguaje ideal para trabajar en análisis y modelado estadístico. La compacidad de código y la versatilidad para procesar datos numéricos y categóricos son virtudes que lo colocan por sobre otros lenguajes en ese campo de aplicación. Por este motivo, aprender a programar en R es el primer paso hacia la Ciencia de Datos, un universo de aplicaciones en continua expansión. Para muchos empleos, programar en R agrega valor a sus antecedentes profesionales. R también opera en otros campos, como web scraping y análisis de datos espaciales, de lo cual se dan ejemplos hacia el final de este curso, pero en estos hay competencia.

Programación en R les enseñará a desarrollar sus propios scripts. Para ello se apoya en numerosos ejemplos, y especialmente en ejercicios de codificación que les invitan a ser protagonistas, ayudados por escuetas guías. De este modo, en seis semanas aprenderán programar en R.

Adicionalmente, un conjunto de scripts aplicados a problemas reales y detalladamente comentados, les guiará hacia un nivel intermedio alto de conocimiento de R, al tiempo que les impartirá las buenas prácticas de programación.

Un último módulo presenta una breve introducción a la aplicación de R en el manejo de datos espaciales, que podrá servir para encaminarles en ese tema.

Programa del curso

Primera Parte

Conceptos fundamentales

  • R y RStudio
    Descarga e instalación
    Operación
  • Paquetes
  • Estructuras y Tipos de datos
    Vector
    Matriz
    Array
    Lista
    Marco de datos
    Factor
    Coerción
    Función
    Inspección de las propiedades
  • Fundamentos de programación en R
    Scripts
    Iteración
    Condiciones
  • Gráficos avanzados
  • Operando con datos
    Ingresar/Exportar datos
    Manejo de fechas
    Manejo de tablas
    Valores faltantes
    Valores extremos
    Minería de datos

Segunda Parte

Aplicaciones

  • Fundamentos de las técnicas aplicadas
    Algebra vectorial y matricial
    Programación lineal
    Series temporales
    Correlación y regresión
    Clasificación, Matriz de distancia, Análisis de agrupamiento
    Componentes principales, Análisis factorial
  • Campos de aplicación
    Agricultura
    Ciencias de la Tierra y Ambientales
    Delito
    Demografía
    Finanzas
    Ingeniería
    Medicina
    Aprendizaje automatizado
  • Nociones de análisis espacial

 

Dinámica de la cursada:

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.


En 2018 las publicaciones diarias buscando gerentes con conocimientos de Python crecieron un 80%. El aprendizaje de Python constituye un paso inicial para introducirse en la Ciencia de datos.

Duración: 6 semanas

El curso se extiende por seis semanas. En las primeras cuatro semanas se presenta todo el contenido. Las últimas dos semanas se emplean en repaso, puesta al día y desarrollo del Proyecto Personal, optativo. El Proyecto Personal brinda la oportunidad de desarrollar un tema de interés particular para el participante.

Destinatarios: La naturaleza multipropósito de Python, unido a la facilidad de aprendizaje, lo hacen atractivo tanto para jóvenes estudiantes como para profesionales formados. Este es un curso de introducción a Python que le llevará hasta un nivel intermedio de manejo del lenguaje. Quienes tengan nociones de Python, o provengan de otros lenguajes, también encontrarán material útil.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

Requerimientos de computación:

Los programas que se emplean son poco exigentes en espacio físico en el disco duro y de uso de la memoria RAM. Una PC con procesador Intel i5, o de rango equivalente, es suficiente para trabajar sin dificultad.Se emplea software de acceso libre y gratuito.

Descripción general del curso:    

Python es un lenguaje de programación de alto nivel y multipropósito que opera mediante la interpretación de scripts y favorece una organización modular del código. Aclaremos esta definición. Alto nivel significa que tiene una sintaxis más cercana a la experiencia en lenguaje del usuario, en otras palabras, es más fácil de entender. El término interpretación se refiere a que el código, o script, es leido, interpretado y ejecutado línea por línea, sin pasar por una etapa de compilación, como es el caso de lenguajes como FORTRAN. Organización modular indica que un script puede dividirse en módulos independientes entre sí de tal manera que un determinado módulo puede ser reutilizado en otros scripts. Adicionalmente, Python es un lenguaje de acceso libre y gratuito.

Python es un lenguaje de programación estructurada y también un lenguaje de programación orientada a objetos. Este curso se enfoca en la programación estructurada.

¿En qué se usa Python?

  • Minería de datos
  • Aprendizaje automatizado
  • Inteligencia artificial
  • Desarrollo web
  • Creación de juegos
  • Creación de aplicaciones de escritorio

Más Información y Aranceles

Duración: Seis (6) semanas. La carga horaria total se estima en 96 horas.

Descripción general del curso:

Python y Excel son dos potentes programas para el procesamiento de datos. Aunque sus prestaciones se superponen, las diferencias son marcadas. Excel tiene a su favor mil millones de usuarios, 100 veces más que Python, lo cual hace que la difusión de informes en formato de planilla Excel sea lugar común (SENACEA, 2021). Como contrapeso a esta popularidad, Excel tiene limitaciones en el volumen de datos que puede procesar, en aspectos de seguridad informática y, sobre todo, en que la ejecución de tareas repetitivas es tarea engorrosa (CambridgeSpark, Abril, 2022).

Python, por su parte, supera a Excel en poder de cálculo, capacidad de gestión de datos, seguridad cibernética, y recursos gráficos, en parte gracias a miles de bibliotecas asociadas. Python opera con scripts que pueden ser reutilizados indefinidamente en tareas reiterativas, como consolidación de planillas, homogeneización de datos y compilación de informes, entre otras.

Este curso se basa en la premisa de que la simbiosis entre Python y Excel es de beneficio mutuo. El usuario de Excel se beneficia al incorporar recursos de Python para automatizar muchas tareas y mejorar las presentaciones, sin dejar de usar Excel. El usuario de Python se beneficia al aprender a manipular datos en planillas Excel y multiplicar la potencial audiencia difundiendo los resultados por Excel, una plataforma de fácil acceso y enorme aceptación.

En este curso se ve cómo combinar Excel y Python. En breve, se ve cómo transferir información de Excel a Python, procesarla en Python y devolver los resultados a Excel en un formato adecuado para la difusión. Se trabaja con dos bibliotecas de Python: pandas y openpyxl

 

Modalidad

El curso es fuertemente práctico e incluye videos complementados con scripts en cuadernos Jupyter.

Quienes deseen un certificado con calificación numérica deben presentar un Proyecto Personal al finalizar el curso.

Habrá una clase sincrónica en horario a convenir, para brindar orientación y para aclarar dudas sobre el Proyecto Personal.

Destinatarios:

Si usted es usuario de Excel y sabe/sospecha que Python puede ayudarle a automatizar tareas y fortalecer la capacidad de cálculo y gráfica de Excel, entonces este curso le será útil. Si usted es desarrollador de Python y sabe/sospecha que Excel le puede ampliar por un factor de diez la llegada a potenciales clientes gracias a la facilidad de uso, la plataforma interactiva y la enorme difusión que tiene Excel, entonces este curso le será útil. No se trata de remplazar un programa por otro. Se trata de combinarlos para crear un recurso mucho más potente.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

 Requerimientos de computación:

Python es un programa de acceso libre y gratuito. Es poco exigente en espacio físico en el disco duro y de uso de la memoria RAM.  Una PC con procesador Intel i5, o equivalente, es suficiente para trabajar sin dificultad.

Programa del curso

Instalación de los programas empleados

Conformación del entorno de trabajo

Bases de datos utilizadas

Python y Excel: los programas

Presentación de Python

Biblioteca openpyxl

Biblioteca pandas

Preparación de informes y miscelánea

Duración: 6 semanas

Horas de curso: 96 horas

. ....

Destinatarios: Para quien desee aprender a programar en R, o simplemente utilizarlo en sus labores profesionales, este curso les dará el conocimiento necesario para hacerlo.

Modalidad: A distancia.

Requisitos: Se utiliza software de distribución libre y gratuita.

Este curso no requiere conocimientos previos de R. Se parte de cero y se construye conocimiento hasta un nivel intermedio avanzado. R no es un lenguaje difícil de aprender pero de todos modos requiere incorporar una cantidad importante de conceptos y de comandos propios de un lenguaje complejo.

Descripción general del curso:

R es el lenguaje ideal para trabajar en análisis y modelado estadístico. La compacidad de código y la versatilidad para procesar datos numéricos y categóricos son virtudes que lo colocan por sobre otros lenguajes en ese campo de aplicación. Por este motivo, aprender a programar en R es el primer paso hacia la Ciencia de Datos, un universo de aplicaciones en continua expansión. Para muchos empleos, programar en R agrega valor a sus antecedentes profesionales. R también opera en otros campos, como web scraping y análisis de datos espaciales, de lo cual se dan ejemplos hacia el final de este curso, pero en estos hay competencia.

Programación en R les enseñará a desarrollar sus propios scripts. Para ello se apoya en numerosos ejemplos, y especialmente en ejercicios de codificación que les invitan a ser protagonistas, ayudados por escuetas guías. De este modo, en seis semanas aprenderán programar en R.

Adicionalmente, un conjunto de scripts aplicados a problemas reales y detalladamente comentados, les guiará hacia un nivel intermedio alto de conocimiento de R, al tiempo que les impartirá las buenas prácticas de programación.

Un último módulo presenta una breve introducción a la aplicación de R en el manejo de datos espaciales, que podrá servir para encaminarles en ese tema.

Programa del curso

Primera Parte

Conceptos fundamentales

  • R y RStudio
    Descarga e instalación
    Operación
  • Paquetes
  • Estructuras y Tipos de datos
    Vector
    Matriz
    Array
    Lista
    Marco de datos
    Factor
    Coerción
    Función
    Inspección de las propiedades
  • Fundamentos de programación en R
    Scripts
    Iteración
    Condiciones
  • Gráficos avanzados
  • Operando con datos
    Ingresar/Exportar datos
    Manejo de fechas
    Manejo de tablas
    Valores faltantes
    Valores extremos
    Minería de datos

Segunda Parte

Aplicaciones

  • Fundamentos de las técnicas aplicadas
    Algebra vectorial y matricial
    Programación lineal
    Series temporales
    Correlación y regresión
    Clasificación, Matriz de distancia, Análisis de agrupamiento
    Componentes principales, Análisis factorial
  • Campos de aplicación
    Agricultura
    Ciencias de la Tierra y Ambientales
    Delito
    Demografía
    Finanzas
    Ingeniería
    Medicina
    Aprendizaje automatizado
  • Nociones de análisis espacial

 

Dinámica de la cursada:

Este curso se desarrolla completamente en formato virtual con lo cual permite realizar la capacitación desde cualquier parte del país y de la región. De la misma forma, el formato habilita a que cada alumno ingrese a la plataforma en el momento y horario que le resulte más productivo, ya que el material queda subido a la misma y no existen restricciones de ingreso ni obligación de horarios o encuentros virtuales.


En 2018 las publicaciones diarias buscando gerentes con conocimientos de Python crecieron un 80%. El aprendizaje de Python constituye un paso inicial para introducirse en la Ciencia de datos.

Duración: 6 semanas

El curso se extiende por seis semanas. En las primeras cuatro semanas se presenta todo el contenido. Las últimas dos semanas se emplean en repaso, puesta al día y desarrollo del Proyecto Personal, optativo. El Proyecto Personal brinda la oportunidad de desarrollar un tema de interés particular para el participante.

Destinatarios: La naturaleza multipropósito de Python, unido a la facilidad de aprendizaje, lo hacen atractivo tanto para jóvenes estudiantes como para profesionales formados. Este es un curso de introducción a Python que le llevará hasta un nivel intermedio de manejo del lenguaje. Quienes tengan nociones de Python, o provengan de otros lenguajes, también encontrarán material útil.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

Requerimientos de computación:

Los programas que se emplean son poco exigentes en espacio físico en el disco duro y de uso de la memoria RAM. Una PC con procesador Intel i5, o de rango equivalente, es suficiente para trabajar sin dificultad.Se emplea software de acceso libre y gratuito.

Descripción general del curso:    

Python es un lenguaje de programación de alto nivel y multipropósito que opera mediante la interpretación de scripts y favorece una organización modular del código. Aclaremos esta definición. Alto nivel significa que tiene una sintaxis más cercana a la experiencia en lenguaje del usuario, en otras palabras, es más fácil de entender. El término interpretación se refiere a que el código, o script, es leido, interpretado y ejecutado línea por línea, sin pasar por una etapa de compilación, como es el caso de lenguajes como FORTRAN. Organización modular indica que un script puede dividirse en módulos independientes entre sí de tal manera que un determinado módulo puede ser reutilizado en otros scripts. Adicionalmente, Python es un lenguaje de acceso libre y gratuito.

Python es un lenguaje de programación estructurada y también un lenguaje de programación orientada a objetos. Este curso se enfoca en la programación estructurada.

¿En qué se usa Python?

  • Minería de datos
  • Aprendizaje automatizado
  • Inteligencia artificial
  • Desarrollo web
  • Creación de juegos
  • Creación de aplicaciones de escritorio

Más Información y Aranceles

Duración: Seis (6) semanas. La carga horaria total se estima en 96 horas.

Descripción general del curso:

Python y Excel son dos potentes programas para el procesamiento de datos. Aunque sus prestaciones se superponen, las diferencias son marcadas. Excel tiene a su favor mil millones de usuarios, 100 veces más que Python, lo cual hace que la difusión de informes en formato de planilla Excel sea lugar común (SENACEA, 2021). Como contrapeso a esta popularidad, Excel tiene limitaciones en el volumen de datos que puede procesar, en aspectos de seguridad informática y, sobre todo, en que la ejecución de tareas repetitivas es tarea engorrosa (CambridgeSpark, Abril, 2022).

Python, por su parte, supera a Excel en poder de cálculo, capacidad de gestión de datos, seguridad cibernética, y recursos gráficos, en parte gracias a miles de bibliotecas asociadas. Python opera con scripts que pueden ser reutilizados indefinidamente en tareas reiterativas, como consolidación de planillas, homogeneización de datos y compilación de informes, entre otras.

Este curso se basa en la premisa de que la simbiosis entre Python y Excel es de beneficio mutuo. El usuario de Excel se beneficia al incorporar recursos de Python para automatizar muchas tareas y mejorar las presentaciones, sin dejar de usar Excel. El usuario de Python se beneficia al aprender a manipular datos en planillas Excel y multiplicar la potencial audiencia difundiendo los resultados por Excel, una plataforma de fácil acceso y enorme aceptación.

En este curso se ve cómo combinar Excel y Python. En breve, se ve cómo transferir información de Excel a Python, procesarla en Python y devolver los resultados a Excel en un formato adecuado para la difusión. Se trabaja con dos bibliotecas de Python: pandas y openpyxl

 

Modalidad

El curso es fuertemente práctico e incluye videos complementados con scripts en cuadernos Jupyter.

Quienes deseen un certificado con calificación numérica deben presentar un Proyecto Personal al finalizar el curso.

Habrá una clase sincrónica en horario a convenir, para brindar orientación y para aclarar dudas sobre el Proyecto Personal.

Destinatarios:

Si usted es usuario de Excel y sabe/sospecha que Python puede ayudarle a automatizar tareas y fortalecer la capacidad de cálculo y gráfica de Excel, entonces este curso le será útil. Si usted es desarrollador de Python y sabe/sospecha que Excel le puede ampliar por un factor de diez la llegada a potenciales clientes gracias a la facilidad de uso, la plataforma interactiva y la enorme difusión que tiene Excel, entonces este curso le será útil. No se trata de remplazar un programa por otro. Se trata de combinarlos para crear un recurso mucho más potente.

Nivel y requisitos

El nivel del curso es básico a intermedio. No se presupone conocimiento previo en Python ni en programacion en general

 Requerimientos de computación:

Python es un programa de acceso libre y gratuito. Es poco exigente en espacio físico en el disco duro y de uso de la memoria RAM.  Una PC con procesador Intel i5, o equivalente, es suficiente para trabajar sin dificultad.

Programa del curso

Instalación de los programas empleados

Conformación del entorno de trabajo

Bases de datos utilizadas

Python y Excel: los programas

Presentación de Python

Biblioteca openpyxl

Biblioteca pandas

Preparación de informes y miscelánea